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Abstract. An implementation of Automatic Sparsity Detection (ASD)
as a new source-to-source transformation is presented. Given a code for
evaluation of a function, ASD generates code to evaluate the sparsity
pattern of the function’s Jacobian by operations on bit-vectors. Similar
to Automatic Differentiation (AD), there are forward and reverse modes
of ASD. As ASD code has significantly fewer required variables than AD,
ASD should be operated in pure mode, i.e. without an evaluation of the
underlying function included in the ASD code. In a performance compar-
ison of ASD to AD on five small test problems, ASD is about two orders
of magnitude faster than AD. Hence, for a particular class of sparse Ja-
cobians, it is efficient to determine first the sparsity patten via ASD. In a
subsequent AD step, this allows to reduce the effective dimension for the
evaluation of the Jacobian by avoiding the evaluation of zero elements
via a selection of seed matrices according to the sparsity pattern.

1 Introduction

Automatic Differentiation (AD) generates derivative code for evaluation of the
Jacobian matrix that corresponds to a given code for evaluation of a function.
Often the Jacobian is sparse, and, if this sparsity information is available, it can
be exploited to compute the Jacobian more efficiently. The basic idea is that
evaluation of Jacobian entries that are known to be zero is not necessary, which
may allow to reduce the effective dimension for the Jacobian evaluation. Algo-
rithms for exploiting Jacobian sparsity have been developed and demonstrated
by Curtis Powell Reid (CPR) [6], Newsam and Ramsdell [13, 7], and Coleman
and Verma (bi-coloring, [4]), details can be found in the respective references.

In some cases the sparsity structure is not known or changes with the in-
put. Bischof et al. [3] describe a dynamical approach of tracking the sparsity
structure (via calls to special bookkeeping routines of an extra library) during
the evaluation of forward mode derivative code. Within an operator overloading
framework, Geitner et.al. [7] describe how to determine the sparsity pattern by
re-executing the tape, a representation of the underlying function, generated in
a previous execution of the function code. The tape is built by overloading every
operation to store the operands and the operation. The sparsity is represented
by bit patterns and combined by logical ’or’ operations.

Here we describe the source-to-source equivalent, that is, a semantical trans-
formation of the original function code to a code that evaluates the sparsity
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structure of the function’s Jacobian. This transformation has been implemented
in TAF (Transformation of Algorithms in Fortran, [8, 11]). TAF is an AD-tool
for Fortran77-95 programs. It normalises the function code and applies a control
flow analysis in order to replace old style Fortran constructs and to transform un-
structured code to high-level structures. Irreducible control flow graphs are made
reducible by node copying [10]. An intra-procedural data dependence analysis
is applied to determine loop-carried flow, anti-flow, or output dependences. The
following inter-procedural data flow analysis computes the IN and OUT sets [5]
of all statements based on the given dependent and independent variables of the
top-level routine. A variable is active if it depends on the independent variables
and influences the dependent variables [2]. Derivative (AD) or bit-vector (ASD,
see below) variables are only built for active variables, and derivative or sparsity
code is only generated for active statements, i.e. statements that compute ac-
tive variables. In reverse modes of AD and ASD, TAF generates recomputations
for required variables by an extension of the Efficient Recomputation Algorithm
(ERA [9]). ERA uses demand-driven program slicing to generate only a mini-
mum of recomputations.

Depending on the number of independent and dependent variables, ASD is
applied in forward or reverse mode to compute the Jacobian’s sparsity. In the
presence of a priori knowledge about the sparsity structure of a Jacobian on a
block level, it is most efficient to restrict ASD to a subset of all blocks.

2 Transformation Rules

In this section we present the rules of transforming the function code into both
types of ASD codes, the forward and the reverse one. To keep the notation
simple, the rules are shown for computing the sparsity structure of a boolean
vector times Jacobian product in forward mode and a boolean Jacobian times
vector product in reverse mode. In the following f, x, y are active variables with
corresponding boolean variables f̂ , x̂, ŷ, which hold the sparsity structure that
is propagated by the ASD code. In order to compute the full sparsity pattern
in the above boolean product the vectors are replaced by the boolean identity
matrices (true on the diagonal). In the transformation rules given below, the
boolean variables are then to be replaced by boolean vectors.

For a binary operation ◦ ∈ {+, −, ∗, /, ∗∗}, the assignment

f = x ◦ y

is transformed by forward mode ASD to:

f̂ = x̂ ∨ ŷ

and by reverse mode ASD to:

x̂ = x̂ ∨ f̂

ŷ = ŷ ∨ f̂

f̂ = false ,
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where ∨ denotes the logical ’or’. For a unary operation ◦ ∈ {−, +} the assignment

f = ◦x

is transformed by forward mode ASD to:

f̂ = x̂

and by reverse mode ASD to:

x̂ = x̂ ∨ f̂

f̂ = false .

Similar rules apply for a function invocation. For a function of one argument
(e.g. sin, cos, ...), the assignment:

f = func(x)

is transformed by forward mode ASD to:

f̂ = x̂

and by reverse mode ASD to:

x̂ = x̂ ∨ f̂

f̂ = false

It is evident that in ASD, unlike AD, the transformed statements do not
require any values from the original statements. Only to follow (forward mode)
or to reverse (reverse mode) the control flow, values may be required (if-then-
else and case constructs). They are provided in the same fashion as for AD (see
[8]). Owing to the reduced number of required values, the pure forward and pure
reverse modes, which compute only sparsity and do not evaluate the function
itself, have a considerable advantage in efficiency. In TAF both pure modes are
implemented for AD and ASD. A command line option triggers generation of
the corresponding codes.

3 Implementation

The ASD implementation in TAF propagates the sparsity structure in bit-
vectors. Depending on the platform used, a Fortran-90 bit-vector is an integer
variable that holds 32 bits, if the kind parameter is 4 (byte), or 64 bits, if the
kind parameter is 8 (byte). 1

This way several matrix vector products are computed simultaneously. The
logical operation ’or’ is implemented by the IOR intrinsic function. It has two bit-
vector arguments and a bit-vector result. Inside the bit-vector the value ’false’ is
1 For most efficient code the bit-vector should be as long as a word of the processor.
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represented by a zero bit. A false bit-vector (all bits are false) is represented by 0
and a true one by NOT(0), where NOT is the Fortran-90 intrinsic function. For
initialisation individual bits are set by IBSET and for interpretation of the results
they are tested by BTEST, both of which are Fortran-90 intrinsic functions.

As an example we use the single assignment

f = a ∗ x + y ∗ sin(z)

which computes a new value for the variable z. It is assumed that only the
variables x,y,z, and f are active.

In forward mode, ASD generates the assignment

sf = IOR(sx, IOR(sy, sz)) ,

where sf is the bit-vector corresponding to the active variable f . Other vari-
able names are generated accordingly. In some cases the RHS expression can
be simplified by applying the rules of boolean operations. Here one bit-vector
corresponds to one active variable and the code computes 32 (64) matrix times
vector products simultaneously. In order to compute more vectors, a bit-vector
array is generated. The statements remain unchanged, since Fortran-90 elemen-
tal intrinsic functions2 operate on scalars and arrays.

In reverse mode ASD generates the sequence of assignments

sx = IOR(sx, sf)
sy = IOR(sy, sf)
sz = IOR(sz, sf)
sf = 0

Similar to AD, the bit-vector to the LHS variable f is reset after the bit-vectors
of all RHS variables have been updated.

4 Performance

The Minpack-2 collection [1] provides several test function codes based on real
physical problems. Codes to evaluate their Jacobian, Jacobian vector products,
and Jacobian sparsity are also provided. We have selected five problems of this
collection to compare the performance of automatically generated ASD and
AD codes:

FDC flow in a driven cavity
FIC flow in a channel
IER incompressible elastic rods
SFD swirling flow between disks
SFI solid fuel ignition

2 For transformational intrinsic functions such as MATMUL more complex statements
must be generated.
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Each function code solves a differential equation on a grid of variable size.
Both the numbers of input and output variables are set equal to the num-
ber of grid points (N), i.e. the Jacobian is quadratic. The number of floating
point operations in the function code and both dimensions of the Jacobian scale
with N .

For each test code, TAF was first used in AD mode to generate code eval-
uating the full Jacobian (without any seeding) in forward and reverse modes.
Next TAF’s ASD mode was applied to generate forward and reverse mode codes
evaluating directly the Jacobians’ sparsity patterns. The codes were compiled
with -O3 by the Lahey Fortran-95 compiler and run on an Athlon Linux PC for
different values of N . In the code bit-vectors were represented by default integer
variables (kind=4).

Fig. 1 shows the relative run-times for these cases. The runtime of ASD code
is about two orders of magnitude faster than than that of AD code evaluating
the full Jacobians. This is not only a consequence of the simultaneous propa-
gation of 32 logical values by the operations on bit-vectors and of ASD’s lower
number of operations. An additional performance gain is achieved by the capa-
bility of TAF to generate code operating in pure forward and reverse modes. It
is worth noting that the advantage of ASD over AD is almost always bigger in
forward mode. Presumably this is owing to the smaller number of IOR opera-
tions required by forward model ASD as compard to reverse mode ASD, which
is also illustrated by the example of section 3. Fig. 2 shows the ratio of run times
for reverse and forward modes of AD, which don’t change much with problem
size.

The Carbon Cycle Data Assimilation System (CCDAS, http://CCDAS.org,
[15, 14]) provides an example of a large-scale ASD application. CCDAS uses ob-
served atmospheric carbon dioxide to constrain parameters in a global model
of the terrestrial biosphere. A subset of the parameters are chosen to be spe-
cific to the model’s plant functional types (PFTs), e.g. tundra. Uncertainties
in the observations are back-propagated via the model’s Hessian to parameter
uncertainties. To map these parameter uncertainties onto uncertainties of target
quantities diagnosed from or prognosed by the model, e.g. the land sink over
a particular region, the corresponding Jacobian is needed. Now, a given region
will typically only host a subset of the global model’s PFTs. Consequently the
sensitivity of the land sink over that region to parameters specific to PFTs not
represented in that region must be zero, i.e. this Jacobian will be sparse. [12]
demonstrate the use of TAF’s ASD mode for the efficient computation of the
sparsity structure of the CCDAS Jacobian that quantifies the sensitivity of the
mean fluxes over latitudinal bands with respect the the model’s parameters.
While the cost of a reverse mode AD run increases by about the cost of 0.25
function evaluations per additional target quantity (from about 3.5 function
evaluations for 1 target quantity to about 26 function evaluations for 96 tar-
get quantities), the cost of the ASD run remains almost constant (at about 2.5
function evaluations).
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Fig. 1. Ratios CPU time(AD)/CPU time(ASD) for the five test codes over dimension of
the problem. Solid lines show reverse mode ratios; dashed lines show forward mode ratios.

5 Conclusions

The rules for the new source transformation Automatic Sparsity Detection (ASD)
have been presented. Given an algorithm to evaluate a function an algorithm to
evaluate the sparsity pattern of the function’s Jacobian is generated. As in Au-
tomatic Differentiation (AD) there are two major modes: the forward and the
reverse mode. In contrast to AD code, which for its local Jacobians requires val-
ues from the function evaluation, ASD code only requires the function’s control
information.
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Fig. 2. Ratios CPU time(AD reverse)/CPU time(AD forward) for evaluation of the full
Jacobian (without any seeding) of the five test codes over dimension of the problem

The implementation of ASD in Fortran-90 has been described and was ex-
plained by a simple example. The run-time of ASD code is about two orders of
magnitude faster than that of evaluating the entire Jacobian by AD and check-
ing for sparsity thereafter. The factor is much larger than the expected gain by
computing several logical values simultaneously using bit-vectors. The reason for
this is the reduced number of operations and the ability of TAF to generate pure
mode ASD code, i.e. code that does not include an evaluation of the underlying
function itself.

Often from prior knowledge about the function the Jacobian can be parti-
tioned into blocks such that the sparsity structure on a block level is known but
within the block is not. In these cases ASD can be restricted to the evaluation
of the sparsity structure within the blocks.
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